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We present an innovative structure of a linear diffraction grating interferometer as a long stroke and
nanometer resolution displacement sensor for any linear stage. The principle of this diffractive interfe-
rometer is based on the phase information encoded by the +1st order beams diffracted by a holographic
grating. Properly interfering these two beams leads to modulation similar to a Doppler frequency shift
that can be translated to displacement measurements via phase decoding. A self-compensation structure
is developed to improve the alignment tolerance. LightTool analysis shows that this new structure is
completely immune to alignment errors of offset, standoff, yaw, and roll. The tolerance of the pitch is
also acceptable for most installation conditions. In order to compact the structure and improve the signal
quality, a new optical bonding technology by mechanical fixture is presented so that the miniature optics
can be permanently bonded together without an air gap in between. For the output waveform signals, a
software module is developed for fast real-time pulse counting and phase subdivision. A laser interfe-
rometer HP5529A is employed to test the repeatability of the whole system. Experimental data show that
within 15 mm travel length, the repeatability is within 15nm. © 2011 Optical Society of America
OCIS codes:  050.1950, 120.3940, 120.3180.

pitch of a linear grating as the basic length unit,
which is more insensitive to the environment [5].

Optical instruments are widely used in length—scale
measurement [1]. Solving the paradox between mea-
suring range and resolution is challenging. A hetero-
dyne phase detection laser interferometer is one of
the most important noncontact metrology instru-
ments for its high resolution and long measurement
range, but it is expensive and sensitive to environ-
mental conditions [2,3]. It is usually used as a cali-
brator, rather than a sensor, for precision linear
stages. A homodyne intensity detection laser interfe-
rometer is simpler in structure, but is short in mea-
surement range and also sensitive to its environment
[4]. The other type of displacement sensor adopts the

0003-6935/11/224550-07$15.00/0
© 2011 Optical Society of America

4550 APPLIED OPTICS / Vol. 50, No. 22 / 1 August 2011

Conventional moiré-type linear encoders have stable
readings but the resolution is limited by the large
grating pitch [1,6].

Grating interferometry is another approach for
long-range nanomeasurement [7]. Fringe signals are
generated by interfering with the laser beams dif-
fracted by a nanoscale pitch grating [8]. With proper
incident angles of the two input beams to the grating
plane, the positive and negative diffraction beams of
a certain order will propagate along the normal di-
rection of the grating and the interference fringe
will be detected by a photodetector or CCD [9,10].
Another method is to let the input beam be normal
to the grating. Then the diffraction beams can be ad-
justed by mirrors and combined by a polarizing beam
splitter (PBS) to form an interferogram [11-14].



These methods, however, need rigorous positioning
of the grating and the optical components. Although
using higher orders of diffracted beams can obtain
finer waveform pitch, signals become weak, yielding
low signal-to-noise ratio. The signal quality will be
notably affected by any tiny geometric error of the
motion. In [15,16], a compact grating interferometer
called a linear diffraction grating interferometer
(LDGI) has been proposed by the authors. With cer-
tain incident angles, the +1st order diffraction
beams can propagate along the input paths, being
a Littrow configuration, which has a higher tolerance
of head-to-scale alignment errors. However, the
system was influenced by unstable waveform distor-
tions due to the process of adhesive bonding of min-
iature optical components.

Another technical issue in a nanometric grating
interferometer is the method and algorithm for the
waveform subdivision [17-19]. It is noted that output
waveforms are not ideal quadrature signals. In [20],
the typical signal distortions are analyzed and the
corrective arithmetic is proposed. These signal dis-
tortions are mainly due to improper bondings of
optical components. The current adhesive bonding
method is subject to an air gap between two contact-
ing surfaces and a gradual position shift during
hardening. The more optical components, the more
waveform distortions will be generated. The authors’
group has developed signal correction and subdivi-
sion software [21], but for real-time measurements
that system is still too slow.

In this paper, an improved design of an LDGI con-
figuration is proposed. Compared with previous
LDGI systems in [14,16,19], this system has the least
number of optics, introduces an innovative mechan-
ical clamping fixture for optical bonding of miniature
components, and uses a robust and fast waveform
correction and subdivision software. It is so compact
that all components that are selected are 5mm in
size and the assembled module is only 40 mm by
40mm in area. A real experimental test to 15mm
moving distance shows that this system can resist
more geometrical tolerances with a positioning re-
peatability (+20) below 15nm and an average accu-
racy within 10nm after a correction. Details are
described in the following sections.

2. Principle of Compact LDGI

A. Structure of LDGI

The configuration of the proposed optical system is
illustrated in Fig. 1. A partially polarized laser beam
of 635 nm wavelength from the laser diode (LD) im-
pinges on PBS1 and is split into two beams: the
transmitted P beam and the reflected S beam. The
intensity balance of these two beams can be adjusted
by rotating the LD. Then both beams are directed by
the mirrors M1 and M2-M3 onto the holographic
gratings. With the incident angles equal to the
+1st and —1st diffraction angles, respectively, from
the left and right beams, the diffracted beams of
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Fig. 1. (Color online) Improved design of LDGI (LD, laser diode;
G, grating; SH, shield; PBSi, ith polarizing beam splitter; Mi, ith
mirror; NPBS, nonpolarizing beam splitter; Qi, ith quarter-wave
plate; PDi, ith photodetector).

the +1st and -1st order propagate along the same
input paths, respectively. This is called the Littrow
configuration of diffraction. A shield SH is set to keep
the zeroth-order beam (reflected beam) from enter-
ing the optical system. The quarter-wave plates Q1
and Q2 prevent the diffraction beams from going
back into the LD because each polarization state will
be changed by 90° after passing a quarter-wave plate
twice. The two diffraction beams are combined at
PBS1 and converted into left and right circularly po-
larized beams by Q3. With the phase shift module
composed by a nonpolarizing beam splitter (NPBS),
PBS2, and PBS3, the interference fringe with 90°
phase shift can be detected by photodetectors PD1
to PD4. Because of the Doppler shift caused by the
grating’s lateral motion, the diffraction beams will
have a phase shift proportional to the motion speed
of the grating. When the grating moves a half-pitch
(d/2), the beat frequency signal has a phase variation
of one period (360°). With a holographic grating of
1200lines/mm, there is a wave cycle of the orthogo-
nal signals at every 416 nm of the grating movement.
This process can mathematically be derived as
given below.

B. Polarization Analysis

Based on the Jones vector theory, a polarized beam
can be described by a two-dimensional vector and
the optical component is expressed by a 2 x 2 transfer
matrix. Some common polarizations are listed in
Table 1 [22-24].

Letting the grating’s diffraction coefficient be kp(0)
for the P beam and kg (0) for the S beam, where 6 is
the incident angle, the transfer matrix can be defined
as

Mg — {—kg(ﬂ) ks(EQ)]' (1)

For the left beam, its cascaded transfer matrix of
Q1-M1-G-M1-Q1 is

1 August 2011 / Vol. 50, No. 22 / APPLIED OPTICS 4551



Table 1. Mathematical Expression of Some Typical Polarizations

Polarization Jones Vector Optics Transfer Matrix
Horizontal Polarization { 1] PBS, horizontally installed Through: 10 Reflecting: 00
0 0 0 01
ical Polarizati PB ith 45° i f f i -
Vertical Polarization [(; S, with 45° rotation of fast axis Through: 1 H ﬂ Reflecting: } {_11 11}

Right Circular Polarization

Left Circular Polarization N

1/4 wave plate, fast axis with 45° decline 5 {1 i }

21i 1

21 sn) 2 1]

Mai-m1-6-mi-c1 9|

1{ —kp(0)—ks(0) —i(kP(H)—ks(H))} %[—a -ib],

2| =i(kp(0)-ks(0)) kp(0)+ks(0) -ib a
(2)
where
{azkﬂm+kd@ 3)
b = kp(0) - ks(0)

A similar Jones matrix can be derived for the right
beam. The approximate linear polarized beam

emitted by the LD can be expressed by { H The left

and right circular beams propagating from Q3 can
thus be derived as

=0 e olalo 10 2L

)

=[]l 125 T ol
vl

-1

(5)

Therefore, after passing through Q3, the two
beams are all circularly polarized.

C. Phase Analysis

When a beam with original frequency [, propagates
into a moving grating, the frequency shift causing the
beat interference is determined by the Doppler effect
and the diffraction law [23—26]

d(sin@; 4 sinf,) =mi . (6)

Af =foY(sind; +sinb,)
c=fo

The parameters in Eq. (6) are defined as below:
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v, grating velocity;

¢, light speed in vacuum,;

0;, incident angle;

0,, diffraction angles;

d =1/1200, grating constant; and
m = +1, diffraction order.

Then frequency shift is simplified as

1% 1%
Af =mo ==+, (7)
Aw = 2zAf = i27zf—i. (8)

Therefore, after passing through Q3, the electric
field vectors of the circularly polarized left and right
beams are

By — A - expli(o- Aw)] H 9)
E—R) =A-expli(ow + Aw)t] {_ll} . (10)

The electric fields of the beams on four photo-
detectors are

—_—

[0 0] & =

EpD1: 0 1](EL +ER)
= (1)} 2A exp(iot) sin(Aw - t), (11)

—— [1 0] %, =

EPDQZ 0 0:|(EL +ER)
- (ﬂ 2A exp(iwt) cos(Aw - t), (12)

EPD3:§|:1 1}(EL + ER)

= H]A exp(iwt)[cos(Aw - t) + sin(Aw - t)],
(13)
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Fig. 2. Typical geometric errors.

- E, + Ep
PD4 = 5 101 (EL + Epg)

1 { 1 —1] .
= E]Aexp(iwt)[cos(Aw-t) -sin(Aw - ?)]. (14)

Substituting Eq. (8) into Eqgs. (11)—(14), the light
intensity on each photodetector can be obtained as

—_—
Ipp1 = ||Epp:|| = A[1 - cos(2Aw - t)]

[t on(z20)] = o-er3e 2)].

Ipps = ||Eppell = A[1 + cos(2Aw - )]

:A[1+COS<27r-2d—U-t)]

:A[1+cos(2n-?>}, (16)

IPD3 = ”EPD3|| = A[l =+ s1n(2Aw . t)]

_A[1+sin<27r-2(;-tﬂ

_A{1+sin<2ﬂ-%>}, (17)

d

Fig. 3. (Color online) Interfering spots.

Table 2. Spots Moving Situation and Tolerance

Geometric Spots Movement on the Tolerance (10%
Errors Photodetector intensity loss)
Yaw @ —

Roll @ —

Pitch @ 0.15°
Standoff @ _
Offset @ —

RN .
IPD4 = ||EPD4” :A[l - sm(2Aw . t)}

:A{l—sin(Zn-%-t)] :A[l—sin(Qn-%)].
(18)

It is clearly seen that the signal’s phase is encoded
by the instantaneous displacement (s = vt). With
differential input, the DC offset can be effectively
decreased.

An advantage of this new system design is that
compared with our earlier systems [15,16] using
14 optics and [23] using 12 optics, this system is only
constructed with 11 optics including the additional
shield plate. It will be explained in Section 4 that
more optics means a more difficult bonding process.

3. Principle of Compact LDGI

The typical geometric errors of the proposed system
are shown in Fig. 2. During the movement, there will
be angular errors, called yaw, pitch, and roll, and lin-
ear errors, called standoff and offset.

The signal contrast will be weakened by spots se-
parations caused by geometrical errors. As shown in
Fig. 3, only the overlapping area produces interfer-
ences while the others only contribute to the DC
offset. Accordingly, the signal intensity of the

Fig. 4. (Color online) Harmonic disturbance caused by redundant
reflections.
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Fig. 5. (Color online) Compact LDGI system bonded with a
mechanical fixture. (a) Optics in clamping; (b) actual dimensions
(in mm).

interference beam is proportional to the overlapping
area. Compared to the ideal signal, the intensity
ratio with tolerance can be expressed by

Sliﬂrz-”é—z"x2—r2sin29

0:57 ar?

x 100%,  (19)

where S1 denotes the overlapping area shown in
Fig. 3, S2 is the ideal area, and

d
— arcsin . 2
0 = arcsin o (20)

It is easily seen that the grating is insensitive to an
offset as long as the light is projected onto the grating.
Besides, since the diffraction angles are equal to the
incident angles, this system is immune to standoff.

The influence of angular errors can be analyzed by
LightTools. From Eq. (19), the tolerance of each geo-
metrical error can be calculated with a given inten-
sity loss. The situations of spots separations with
respect to each geometrical error are listed in Table 2.
The tolerance limit is given when the intensity ratio
is at 90%. It is seen that the offset and standoff do not
alter the spots, and yaw and roll errors do not change
the intensity because the spots move simultaneously.
A normal linear stage will have pitch errors of up to a
few arc seconds only. Therefore, this improved LDGI
is almost immune to geometric errors.

4. Compact Design

The air gap between two contacting surfaces will
cause unexpected reflections resulting in some ghost
spots. If any ghost spot emits to the grating, harmo-
nic disturbance will be generated, causing alter-
nately changing amplitudes of the interference
signals, as shown in Fig. 4. This is very likely to hap-
pen when too many optics are bonded together with
adhesive glue [15,16].

From the optical configuration of the LDGI system
shown in Fig. 1, it is seen that five optics (Q1, PBS1,
Q3, NPBS, and PBS2) can be lined up. An innovative
mechanical clamping fixture is, therefore, designed
to firmly press these five parts together with setting
screws, as shown in Fig. 5(a). An elastic pad is in-
serted in the end of the fixture to absorb redundant
pressing force. This new idea of mechanical bonding
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technique is simple and an air gap will definitely not
occur. In addition, the same procedure can easily be
reproduced by anyone without the need of a skillful
technician. The clamping force is applied through an
adjustable plate to the optics. The deformation of op-
tics can be minimized with carefully controlled
screwing force. Moreover, since human-induced ad-
hesive errors are entirely avoided by this process,
all optical components can be selected to the smallest
size in order to make the system as compact as pos-
sible. Figure 5(b) shows that the developed LDGI sys-
tem is of about the same scale as the grating. This is
especially useful when the linear stage is small.

5. Signal Normalization and Subdivision

Typical waveform signal distortions of motion sen-
sors are DC drift, amplitude variation, and phase er-
ror [20]. The usual Lissajous circle may become a
tilted ellipse, as shown in Fig. 6.

In our previous design, a software-based correction
scheme was employed to compensate for the distor-
tion errors [21]. The real-time performance, however,
is subject to the computational workload. In this
study, the signal processing is mostly conducted by
a specially designed electronic circuit in which the
DC offset and amplitude difference are normalized
by adjusting the floating reference and amplifying
the scale. Besides, the influence of amplitude varia-
tion can be eliminated by the division operation
during the process of phase subdivision [21]. Then
the phase error is corrected by vector summation
and subtraction operations as follows.

Suppose the two nonorthogonal waveforms are
X = u(x) =sin(x) and Y =v(x) = sin(x + ¢), where
¢ = 0. The outputs can then be configured as

u'(x) = u(x) + v(x) = sin(x) + sin(x + ¢)

—Hacosf, (21)

2x
— 925i
sin 5 5

V'(x) = u(x) —v(x) = sin(x) — sin(x + ¢)

2 .
= 2cos x;(psmg. (22)

Thus, the newly configured waveforms u'(x) and
v'(x) have an exact phase shift of 90°. The Lissajous
circles before and after vector operations are shown
in Fig. 7.
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(Color online) Typical signal distortions.
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Fig. 8. (Color online) Pulse counting in forward (left) and reverse

(right) motions.

The corrected waveform signals can then be used
for the software-based pulse counting and period
subdivision down to the level of nanometer resolu-
tion. Since the sign of the phase shift, positive or ne-
gative, has an apparent relationship with the moving
direction (shown in Fig. 8), the pulse-counting algo-
rithm is based on the following rules:

if S1 crosses zero from negative to positive while S2
is negative, count +1, else count -1,

if S1 crosses zero from positive to negative while S2
is positive, count +1, else count -1;

if S2 crosses zero from negative to positive while S1
is positive, count +1, else count -1,

if S2 crosses zero from positive to negative while S1
is negative, count +1, else count —1.

This algorithm is deemed more robust than the
conventional counting using a given threshold value
of the signal intensity, which is also called a DC
counting. It is known that when the signal variation
occurs due to geometric errors of the moving stage, it
may cause missing counts. The proposed counting
method is based on the number of zero crossings,
being a kind of AC counting, which is free from am-
plitude variations of the sampled signals. As shown
in Fig. 9, even if there is micronoise in the signal (ex-
aggerated in the figure), the net algebraic count is
the same as the up and down fluctuations and can
compensate each other.

The pulse-counting procedure only calculates the
integer numbers of the quarter-pitch. The resolution
is still limited to 104 nm. For less than a quarter-
pitch motion, a subdivision method has to be applied.
Since this is done by software in the developed sys-
tem, a general lookup table (LUT) of tangent data is
stored for this purpose. If the LUT stores data of
every one degree of phase, the resolution of the signal
subdivision can easily reach less than 1 nm without
any difficulty.

6. Experimental Test

The developed LDGI system, together with the sig-
nal processing circuit and the displacement subdivi-
sion software, was verified by experiments with five
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Fig. 9. (Color online) Noise-immune principle.

Table 3. Experimental Data of Displacement Measurements

Position (mm) 0.1 1 5 10 15

Error 1 (nm) 1 96 432 882 1315
Error 2 (nm) 2 105 421 881 1338
Error 3 (nm) -1 88 439 861 1332
Error 4 (nm) 0 87 418 875 1321
Error 5 (nm) 3 99 425 876 1329
Average Error (nm) 1 95 427 877 1327

Standard deviation (nm) 1.6 7.6 8.5 8.0 9.1

Table 4. Experimental Data after the Third-Order
Polynomial Correction

Position (mm) 0.1 1 5 10 15
Error 1 (nm) -7 11 0 7 -12
Error 2 (nm) -6 20 -11 6 11
Error 3 (nm) -9 3 7 -14 5
Error 4 (nm) -8 2 -14 0 -6
Error 5 (nm) -5 14 -7 1 2
Average Error (nm) -7 10 -5 2 0

different displacements of approximately 0.1 mm,
1mm, 5mm, 10mm, and 15mm. Each experiment
was repeated five times. The results of the LDGI
readings were compared with the actual displace-
ment read by the HP5529A laser interferometer
and the errors were recorded. Table 3 lists the experi-
mental results.

A trend of progressive errors can easily be seen in
Table 3 due to many influence factors; for instance,
the imperfect alignment of the laser beam to the mo-
tion axis of the stage is likely to yield a cosine error.
Besides, the systematic straightness error of the
moving stage as well as the permanent distortion of
the grating while mounting may contribute to high-
order components of the error curve. A third-order
polynomial fit to the systematic error is conducted:

d, = 0.19x% - 3.59x2 + 100.22x — 6.04. (23)

The residual errors after the error correction are
mostly due to random errors, as listed in Table 4.
Combining the results from Tables 3 and 4, it is ver-
ified that the accuracies and standard deviations of
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the developed LDGI are all less than 10 nm for stroke
lengths up to 15 mm.

7. Conclusions

In this paper, the design and work model of a high-
precision displacement sensor named LDGI is
presented for long-range and high-resolution mea-
surements. With a simplified structure, the align-
ment head-to-scale tolerance can be significantly
enhanced. A hardware-based signal processing cir-
cuit and a software-based waveform counting and
signal subdivision algorithm are developed for a real-
time displacement recording. Some special features of
this system are:

1. simplified structure with less components and
higher tolerance. It is very suitable for a displace-
ment sensing of fine motion stages,

2. less number of optics compared with our
precious designs,

3. mechanical fixture for optical bonding without
an air gap and easily reproducible,

4. real-time signal processing and correction by
hybrid hardware/software implementation,

5. high head-to-scale assembly tolerance, and

6. high accuracy and repeatability.

The work reported is a part of an International Co-
operation Project founded by the National Natural
Science Foundation of China (NSFC) under contract
number 50420120134.
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